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The long-time behavior of an infinite chain of coupled harmonic oscillators is 
studied. In addition to a limiting "hydrodynamic" (Euler-type) equation, the 
"next approximation" is investigated. The corresponding equation is derived. 
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1. I N T R O D U C T I O N  

This paper continues the work (1) devoted to the derivation of a limiting 
"hydrodynamic" (Euler) equation for the infinite chain of harmonic 
oscillators. We refer to ref. 1 (where basic notations are taken from) for a 
detailed discussion of this topic for the model under consideration and to 
refs. 2 ~ ,  for the statement of the problem in a general framework. The 
"Euler" equation for the harmonic oscillator model is written in terms of a 
spectral density matrix function (SDMF) profile, 

P(t;x,O)=(P~'P(t;x,O),~,[l=l, 2), t,x~Nl, 0e[ -n ,n )  
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which describes the "macroscopic" time evolution of local equilibrium 
parameters. It reads 

~F(t;x'O)=A(O)-~xF(t;x'O)'Ot 0e[ -Tz ,  zt), t ,x~N 1 (1.1) 

where 

and 

A(O)=i~o,(O) (co~O) -1/.,(o)) (1.2) 

[k~; 71/2 
co(O) = V(k) exp(ikO)J , 0 e [--Tz, ~) 

V(. ) is the harmonic interaction sequence. The precise definition of the 
SDMF is (see Theorem 3.1 below) 

1/27r f~_ dO e-ik~ x, 0)= ~-olim (y~_tx3(e-lt) y~, lx]+k(~-lt)>p~ 

where y ) = q ;  is the position and 2_ y j - p j  the momentum of the j th  
oscillator. 

The main goal of this paper is to derive an equation for the next 
correction (in various senses) to the limiting Euler equation. 

Our interest in this problem comes from a widespead belief (which was 
presumably initiated by a remark of Morrey [5]) telling that the Navier- 
Stokes equations appear when one takes into account, in addition to the 
limiting formulas, the first order correction in e, the scaling space time 
parameter. It turns out that a "simple" version of the "corrected" equation 
for the harmonic oscillator chain is of the form 

o P(t; x, o) = A(O) 0 0 2 05 G F(t; x, O) ~- ~B(O) ~ x  2/~(/; x, 0)  0 E [- - ~, g) ,  l, x E ~1  

(1.3) 

where 

B(O)=ioo"(O)(e)(O0) --1/(3(0) ) (1.4) 

The precise formulation of this assertion is given by Theorem 3.1. We 
must say that this theorem, in its present form, establishes a "correcting" 
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property of Eq. (1.3) (w.r.t. Eq. (1.1)) only in a weak sense: Eq. (1.3) 
provides a good approximation for the harmonic oscillator evolution on 
larger time intervals. However, we are yet not able to prove (although it 
looks reasonable) that Eq. (1.3) takes into account all terms of the order ~, 
i.e. to prove that 

i )z  

It could be appealing to associate the additional term in the r.h.s, of (1.3) 
with a "viscosity" of a "medium" composed by harmonic oscillators. 
However, we prefer to be more reserved about this point of view. We 
notice that "higher order" corrections to the Euler equation also may be 
derived. They have a structure similar to (1.3) and are established by 
means of similar arguments. 

The paper is organized as follows. After a short preliminary section we 
present in Section 3 a simplified version for deriving the Euler equation 
(1.1).5 The next approximation is discussed in Section 4. 

2. P R E L I M I N A R I E S  

Let )~ = (N1 x ~l)Z be the phase space of the one-dimensional classical 
spin system on Z. The harmonic oscillator system is described by the 
following formal Hamiltonian: 

H ( x ) =  ~ [ p : / 2 +  ~ V([i--kl)qiqk I (2.1) 
i ~ Z  k ~ Z  

(the symbol Z in the summation will be omitted). 
We assume that the potential has the same properties as in ref. 1. It is 

well known that the infinite system of motion equations associated with the 
Hamiltonian (2.1) has a unique solution for initial conditions from a subset 
~' of X that is large enough to be the support of interesting states 
(probability measures on Z). Fof details see refs. 6 and 7. 

Given x = ( q l ,  Pl)~X',  we can write the solution of the motion 
equations in the standard way: 

qk(t) = ~  [-U]~'~_z(t) q, + U~k'Z ,(t) p,] (2.2a) 
1 

Pk(t) = Z [ U~'! ,(t) ql + Ul'~,(t) p,] (2.2b) 
l 

5 This is based on a remark due to J. Fritz. 
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where 

and 

U l ' l ( t )  = 1/2n f~ doe ik~ cos[co(O)t] 

U2,2(t) = 1/27z f~ dO e -ik~ s in [~o(0) t ]  
_~ co(O) 

U2"l(t) = -1 /2zc  f" dO e ~k~ s in [co (0 ) t ]  

V -I 1/2 
 (o)=12 e'*~ 

L - k  J 

Dobrushin et  al. 

(2.3a) 

(2.3b) 

(2.3c) 

(2.4) 

3. T H E  EULER L I M I T  

In this section we give a simpler derivation of the Euler limit for the 
harmonic oscillator system. 

Let a family of 2 •  matrices F(x, 0 ) =  {/6~m(x, 0), ~,/7= 1, 2}, x ~ R  1, 
0 e [ - g , ~ )  (an initial S D M F  profile), be given with the following 
properties~l): 

A. For every fixed x E ~1 and ~,/7 = 1, 2 the function 0 ~ P~m(x, 0) is 
bounded on [ - n ,  n) and the inverse Fourier transform 

F~.n(X) = 1/21t f"  
--TO 

satisfies the bound 

dO e-ek~ O) 

where ao, al are positive constants. 

B. For every fixed x~  ~1 the diagonals Fl ' l(x, .) and F2"Z(x, .) are 
nonnegative even functions and the off-diagonals _Pro(x, .) and F2'l(x, .) 
obey 

Pl'2(x, -O)=Pl'2(x, o)=P2'l(x, -o)=P~'l(x,  0), O~ [ -~ ,  ~) 

C. For fixed x E R  1 and OE[--Tt,~) the matrix F(x,O) is positive 
semidefinite. 

sup IF~m(x)l ~ a  I exp(--a  o Ikl), k e Z  1 
x f f R  
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D. For every 0~ [ - ~ ,  ~) the functions /'~'~(., 0), ~ , / /=  1, 2 are C 1 
and the function 

x --* sup P~'~(x, O) 
0eE-a ,~)  

is bounded uniformly on finite intervals. 
Let {P'}, e >0,  be a family of states with the following properties: 

1. (y~)p~=0,  j e Z ,  e > 0 ,  ~ = 1 , 2  

2. t(y~y~)p~--F~fk(aj) ] 

~ m i n [ b ~ e x p ( - a [ j - k [ ) , e b o [ j - k [ ] ,  ~ , / /=  1, 2 

where b 0 and b~ are suitable positive constants. 

3. t y~y~ ) f~ l<~( [ j - k [ ) ,  ~ h ~ ( h ) < ~  with 7>~2 
h>0 

where ~ is monotonic. 

Here and below we use the notation 

y~ = q j, y2 = p j, j ~ 7/ 

In the Euler regime we study the limits 

F[.~(t; x) = lim (Yt~ lx~( e ~t) [~ +~(e 
~ 0  

~,/3= 1,2 (3.1) 

which are related to the locally invariant quantities. 
The following theorem describing the Euler limit was proven in ref. 1" 

Theorem 3.1. Under conditions A-D and 1-3 the limits (3.1) exist 
and for t different from zero are given by 

fT~ 
F~'~(t; x) = 1/2n dO e-ik~ X, 0), 0~, ~ = 1, 2 

where 

Pl,~(t; x, O) 

= (1/4){ f i ' l ' l (x+( .o ' (O)t ,  O)-] -Fl ' l (x - -co ' (O) t ,  0)} 

+ 1-1/4~(0) 2 ] {P2"2(x + ~o'(0) t, 0) + ~2,~(x - ~ ' (0 )  t, 0)} 

+ [1/2~o(0)] {Im yx,2(x+co'(O) t, 0 ) - I m  f ' l '2(x-co'(O) t, 0)} 
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Pl'2( t; x, O) 

= [ico(O)/4] {_Pla(x + co'(0)t, 0 ) - / 6 1 " l ( x -  co'(0)t, 0)} 

+ [i/4co(O)] {FZ.2(x + co'(0) t, 0 ) -  F2"2(x- e)'(0)t, 0)} 

+ (i/2){Im/'1'2(x + co'(0) t, 0) + Im/~1'2(x - of(0) t, 0)} 

F2'l(t; x, 0) = --Fl'2(t; x, 0) 

p2'2(t; x, 0) = ~0(0) 2 P~'~(t; x, O) 

The matrix function 

P(t;x,O)=(P'a(t;x,O), c~, f l = l , 2 ) ,  t , X ~  1, 0 E F - g ,  rc) 

satisfies Eq. (1.1). 
It is useful to notice that for any te  [R 1 the family of 2 x 2 matrices 

P(t;x,O)=(P='~(t;x,O),c~,fl=l, 2), x e ~  1, 0 ~ [ - r r , ~ r )  

satisfies conditions B and C (and condition D, too). Hence, one can con- 
sider this family as the SDMF profile at the macroscopic time moment t. 

Examples of families of states that obey 1-3 are discussed in ref. 1. 
In this section we give a short proof of this theorem. 

Proo f .  Fix x e ~ and l~ 77. As in ref. 1, we consider Eq. (3.1) for the 
case c~ = 3 = 1 and evaluate the contribution given by the (q-q) covariance 
only. We have to study the limit of the sum 

U~,l(e-lt) 1.1 i (  a lt)<qE~ lx]_nq[~ 'x] n '> l  "~ UIT' -+- 
n,n' 

At the first stage, as in ref. 1, one passes from (3.2) to 

(3.2)  

E Unl'l( ~ l t)  11 1 U.'+,(e t)P#L,(e(Ee l x ] - n ) )  
n,?l' 

and then to the Fourier transform 

1 /4~2~f~  d O e _  i'~ cosE~o(O) e-lt3 

x d(oe i '*cos[oo(O-(o)~-l t]pla(e([e- lx]-n) ,O) (3.3) 
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Given X ~  1, w e  introduce a space cutoff for the function /~'~(y, 0), i.e., 
consider a function Fol.l(y, 0 ) =  ~1,1 F'~,o(y, 0), y e n  ~, 0e  [ - re ,  n), such that 

(i) -#~'l(y,O)=Fl'l(y,O), ye[X--Cot, X+Cot], C~,fl=l, 2 

(ii) -#0~'l(y, 0 )=0 ,  yq~[X--Cot--c~,X+Cot--Cl], 0 ~ [ - - ~ , ~ )  

(iii) / 'o~"( ' ,0 )eCg,  V 0 e [ - ~ r , n )  

(iv) sup sup max(lF~,~(y, 0)[, 
y ~  0~[  r~,~z) 

l(a/Ox) P8,~(x, 0)1, I(a=/ax ~) PS,r 0)t)< oc 

where Co > max [(~'(0)1 and c 1 > 0 are constants. 
In the next stage of the proof we replace the term t el'~ (e( [~-  ix ] -  n), 0) 

in (3.3) by the approximate value F~,l(e([e i x ] - n ) ,  0). The difference 

1/4~2 ~ doe il~ cos[e)(O)E-ltl dqoei"~~ cos[e)(O+~o)e-lt] 
n 

• [P'"(e([~ ix] -n) ,  Ot-P;"(~([~ ,x] -n) ,  0)3 

contains nonzero addends for Int >Co~-'t only and goes to zero due to 
rapid decreasing of the integral 

f~ do cos[co(O+ ~o) ein~o 8-1t] 

for such values of n [see ref. 1, Lemma 2.6(iii)]. 
Now we use the Poisson formula [see, e.g., ref. 8, Chapter XIX, for- 

mula (5.2)] 
+ oo + oo 

Zkf (~+2k2)=n/2  ~.f(ng/)~)e ~"~/;'1r f e C g ,  ~ , 2 ~  ~, 2#0  (3.4) 

where f is the Fourier transform o f f  
Denoting 

~1,1 0 )  = fi'0I,l(~ 0 )  ( 3 . 5 )  F~,r y, - y, 
we get 

- F~:iE~_,~(e (q~+2kn), 0) (3.5') 
n k 

where ~['o~JE~_~](v, 0), ve  ~ ,  0E [ - re ,  re), denotes the "spatial" Fourier 
transform of Fol;~E~ '~](--Y, 0), i.e., the integral 

f dy ei~y~;'<~ ,x~(-y, o) 



X ,~ --1 Z *A~l]l[e-lx] ('g --1(~0 -1- 2k=), O) 
k 

Using the fact that  /~,~(.,  O) belongs to C~ ~ 
contr ibut ion of the sum 
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Substi tuting (3.5') into the expression under  consideration,  we obtain 

1/4~2 ~ dOe it~ cos[co(O) e-lt] 
n - - 7 ~  

- _ x d~oei'~cos[og(O qg)e-lt]Fl'l(e([e-lx] n),O) 

= 1/4re 2 doe il~ e-lt] d~,cos[o~(O+q~)e lt] 

(3.6) 

one concludes that the 

k~-O 
Fo,~E ~ lx3(e (q9 + 2kTr), 0) 

is going to zero as e ~ 0. In fact, this sum does not  exceed, in absolute 
value, the quant i ty  

c3e- l{exp[  - - c2~-1(2rc  + ~p)] + exp[  - c 2 e  1(27z - q~)] } 

~< 2C3 e - l e x p ( - c 2 e  1re) 

where c2 and c3 are positive constants. 
So we have to compute  the limit of the term corresponding to k = O, 

1/4~ 2 dOe a~ cos[o~(O) e-l t]e-1 

S x &o c o s r m ( 0 -  ~o) e l t ]  ~ " '  -1 f?~:~E~_lx~(e q~, O) 
r~ 

S 
= 1/4~ 2 dO e-il~176176 

x S d~p(e i~(~ ~)~ ~t+e-i~o(o-~)~-~t)/2 

Fd.,E~_lx3(e ~p, 0) (3.7) 

We write the rhs of (3.7) as the sum of four terms corresponding to the 
products  exp[+ iog(0 )e  't]exp[+ieo(O-qg)e-lt]. All these terms are 
investigated in the same way. As a result, the nonzero contr ibut ion is just 
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given by the two terms that correspond to different signs of the exponents. 
For definiteness, we consider the integral 

S 1/16n 2 doe "~176 dqo e i~176 ~' 

X g  1 * * 1 , 1  - 1  Fo,~E ~ ,xj(e qo, 0) (3.8) 

(the integral with the opposite signs of the exponents is treated in the same 
way). 

We write the usual Taylor sum representation for e)(0 + q)), 

~o(0 + q~) = co(O) + co'(O) ~o + h(O, ~o) ~o ~ 

and arrive at the following equality: 

~ dO e-"~ ~ dqo exp[ + io9'(0) qo~ it + ih(O, q)) (p2~-it] (3.8) 1/16re 2 
d 7z --gz d 

x e 1 ̂ _,6o1:~E _,~l(e-,~o ' 0) (3.9) 

After the change of variables e-~q)= z, the rhs of (3.9) takes the form 

1/16=2 f dOe ,,0~ '~ = dz exp[ + iof(O) zt + ih(O, ez) z 2 8 t ]  ^ %,1 F~,+_,~l(z, O) 
- - r e  J ~ - l ;~ 

(3.1o) 

can restrict the In fact, since "1.1 F6.~E~_lx? has compact support, we 
integral in (3.10) to a finite region (independent of ~). 

Writing 

[" dz exp[ +ico'(0) zt+ ih(O, ez) z z g t ]  A %,1 1/2re Fo.~E ~ lx~(z, 0) 
, )  u 

1/27z f" dz exp[ + ico'(O) zt] = F~,~E~_l~l(z, O) 
k 

- - u  

+ l  -u dzexp[io)'(O)zt] {exp[ih(O, ez)z2et] - 1} AF~.~E_~xl(z O) 

(3.11) 

we observe that the last integral goes to zero for any fixed u. On the other 
hand, the first integral on the rhs of (3.11) asymptotically equals 

F~.~E , % '  ~1(r t, 0) = Pom(gEe-*x] -- co'(0) ,, 0) (3.12) 

822/52/1-2-28 
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This goes to F~,~(x-co'(0)t,  0) as e ~ 0. The other integral coming from 
(3.7) tends to Pl.~(x + co'(O) t, 0). 

The last step is to remove the space cutoff and pass from i6~ ,~ to pro. 
This may be done because the Fourier transform ~/~l,~0.~E, ~3~ z," 0) is rapidly 
decreasing. Thereby we get the result. 

4. T H E  NEXT  A P P R O X I M A T I O N  

In this section we study the further approximation in the 
hydrodynamic behavior of the system. More precisely, we consider the 
asymptotic behavior, as e ~ 0, of the quantity 

(Y~ ~3( e 2t) yE~ ~ ~x3+l(e-2t))e ~, ~ , f l = l , 2  (4.1) 

where {P~,e>0} is a family of states satisfying the conditions 1-3 of 
Section 3. This means that we are looking at the system in a macroscopic 
time e-  ~t. 

We shall need a new assumption D' on the initial SDMF profile 
{F(x,.) ,  x a ~a} which is somewhat stronger than that of D (see Section 3): 

D. For every 0~ [--~,  ~), the functions i6~( -, 0) c~, f l=  l, 2, are C ~ 
and admit the representation 

/~a(x, 0) = 1/2~ f~ fi'tJ(O, ds) e ~ (4.2) 

where fi~t~(O, ds), 0 ~ [ - ~ , ~ ) ,  is a (complex) Borel measure on 
depending on the parameter 0 ~ [ -  n, z) and satisfying the condition 

supVar( /~=p(O, . ) l (  ~ l_~]~[s,s+l))<~a2(l+s)-2 a, s>O 
0 

with constants a 2 > 0 and 6 > 2/3. 
The result of this section (and the main result of this paper) is the 

following theorem. 

T h e o r e m  4.1. Under conditions A-C and 1-3 of Section 3 and 
condition D' of this section the following equality holds: 

lim [ ( y ~  ,x2(~-2t) y~  ,x2+t(e-2t))e~--F~(t; x; l)] = 0  (4.3) 
a ~ O  

where the functions {F~'~(t; x;/);  c~, fl = 1, 2} are given by 

= ~ dO e it~ x; O) F~(t;  x; l) 1/2~ f"  
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with 

P~,~ t" x; O) (e) t , 

= 1/4[2nco"(O)t] ~/2 f dz ({expE- i zZ /2c~  a f t }  

• { p i , l ( x + z + o ~ ' ( O ) ~  ~t, 0)+~o(0) 2 p 2 ' 2 ( x + z + o ~ ' ( O ) ~ - l t ,  O) 

+2fro(0) ]  - 1 1 m p l ' 2 ( x + z + m ' ( O ) e  it, 0)} 

+ (1/,,/7) exp[iz2/2~o"(O)t] {Pl' l(x + z -  m'(0)e it, 0) 

+ co(0)-2 p2,2(x + z -  o~'(0) ~-~t, O) 

- 2 [ ~ ( 0 ) ]  1 1 m ~ l . 2 ( x + z _ o f ( O ) e - l t ,  0)}) 

pl,2~ t" x; O) (~) t , 

= 1/412nOg"(O)t] 1/2 f dz ( {exp[ - i zZ /2~~  x /7 }  

x {ic~(O)Pl'~(x + z + ~o'(O)e - i t ,  O) + io9(0) - '  

x F2'2(x + z + ~ ' (0 )  e it, O) 

+ 2 Im P~'2(x + z + ~o'(O) e - l t ,  0)} 

+ (1/~/-[) exp[iz2/2~o"(O)t] { - iog(O)pl'l(x + z - ~o'(0) e -~t, O) 

-i~o(O) -~ P2'2(x + z-o~'(O)~ ~t, O) 

+ 2 Im Pl'2(x + z -o~ ' (O)  e - l t ,  0)}) 

P~;r x; o)= -P~s x; o) 

P~;~( t; x; o) = ~ (  o ) ~ P~;~ ( t; ~; o) 

The matrix function /6(~)(t; x; 0) := _#(~)(~t; x; 0) satisfies Eq. (1.3). We do 
not claim that the family of matrices {/~(~)(t; x; 0), t, x e  El, 0 e  f - n ,  n)} 
satisfies conditions A-D of Section 3: it seems that in a general situation 
conditions B and C are violated. 

Proof. As above, let t > 0. Fix x e ~ and le  7/. We again consider the 
relation (4.1) for ~ = f i= 1 and restrict ourselves to evaluating the con- 
tribution given by the (q-q)  covariance. We now have to study the limit of 
the sum 

E u~,'(~ ~t) ',' ,(~-2t)< Un'+ qE~-lxl-.q[* ~x3 . ' ) m  (4.4) 
n.n' 

The first step is to pass from (4.4) to 

Un, + 1(~ -2t) Fnl: 1_ n(~(  [,~ - l x ' ]  - -  H ) )  
n,n' 
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and then to the Fourier transform 

Z 
n E Z  

f 
~ 

1/4~ 2 dO e -il~ cos[e)(0) e 2t] 

x & o e - i ~ c o s [ c o ( O - q ~ ) e - a t ] ~ l , l ( e ( [ ~ - l x ] - n ) , O )  (4.5) 

[cf. (3.3)]. The difference 

U~"(e-2t) U~:l+ l(e-2t)[ (q[~ ~]-~qE~ l~]-~')m- F~:l-.(e([ e 1X]--n))] 
n , n '  

is estimated by using Lemma 2.6 from ref. 1 and condition 2 (see Section 3). 
It is less than 

n n In  n I < - - l o g  e 

+ j 1,, U,,+ l(e-2t)[ 
n':ln n ' l ~ >  - - l o g e  

<~ c6 e2/3 ~ [U~'l(e-2t)l [-e(log e) 2 + cse] 
/7 

C7~22/3e 4/31-e(1og e) e -t- Cse ] 

where c4,..., c7 are positive constants. This goes to zero as e ~ 0. We used 
here the estimates from Lemma 2.6 in ref. 1. 

In the next step we replace the funct ion/~. l (e([e  lx] - n ) ,  0) in (4.4) 
with P~;~(~([e l x ] - n ) ,  0), where the function F(~)(y,O)~11 ~,1 =F~;),x(y, O) is 
given by 

Fd)(y ,  O ) = / ' " ' ( y ,  O ) e x p [ - e 2 + 6 " ( y - x ) 2 ] ,  y ~ N  (4.6) 

where 6' ~ (4/3, 26) (see condition D'  above). The difference 

i 
x 

1/4~ z dO e ilo cos[o)(0) e 2t] 
n E 2 V  - - ~  

x dq~ e -i"~~ cos [~o(0 - q)) e-2t]  

x [Fl"(e(Ee l x ] - n ) ,  0 ) - [ '~ l (e ( l -e  ' x ] - n ) ,  0)] 
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is estimated on the base of the same arguments as above. It is less than 

f~ e -2 t ]  c s ~ dcpe i,,~ cos[e)(0 - qo) 
Inl > c0a-2t --~ 

z inCP cosE(D(O-- (p) ,~ 2 t ]  

O~n<~coe-2t 

x {1- -exp[- -e2+X(en--~)2]}  

C1082t -~ C l1~2/3~,- 2,~ 5' 

where c s ..... c~ are positive constants. Hence, it is going to zero. 
Now we can apply the Poisson summation formula. 

[cf. (3.5)] 
" 1 1  0 )  ~1,1 0 )  F~k ( - z ,  = - F(~)(~ z, 

we get [cf. (3.5)] 

~"'P "1 ~ F(~).~[ ~ ,~1(~ l(q~ + 2k7:), 0) 
n k 

Denoting 

(4.7) 

(4.7') 

where ^P~I ~ ~q(v, 0), v e R1, 0 E [ - 7 : ,  x), denotes as before the Fourier 
transform oi" F~i ,< _~xl(-z,  0) in the variable z. Substituting (4.7') into the 
expression under investigation, we obtain 

f Jr 
1/47:2 dO e -it~ cos[o)(0) e-2t] 

n ~  ~ ~z 

f 
T[ 

• dcp e i.~o cos[co(O- ~p) 8-2t]  P ~ } ( 8 ( [ c - ' x ]  - n ) ,  O) 

f~ dO e itOcos[~(O) e-2 t ]  = 1/47:2 j _ .  

f 
~ 

^ ~1 1 --1 x dq~cos[~o(O-go)e 2/]8-1E F(~).~E_x](s (~o+2k~) ,0)  
--TZ 

k (4.8) 

The next step of the proof is to check that the contr ibution of the sum 

,~--1 E ^ ~1 1 - -1  F~,[~ x](e ((p+2kT:),0) 
k r  

goes to zero as e - ,  0. By using the representation (4.2), one writes 
^~t ,1  F(~),r 0) = (47:ex + 2) - m  exp[iv(~ - x ) ]  

f~ ftl'l(O, ds) e x p [ - i s x -  (1/4) e - x - z ( v +  s) 2] (4.9) X 



436 Dobrushin et  al. 

We have from (4.9) 

k~aO 

~< Z (1/x/~)  e ~,/2-1 f ill,l(0, ds) exp(isx) 
k4=0 ~ < (~/2)e -1 

x exp{ - 1/2e -a' 2[e-l(rp + 2krt) + s] 2 } 

+ E ( 1 / ~ ) ~  672-1 f~ ftl.t(O, ds) exp(isx) 
kv~O sl > (r~/2)e - I  

x exp{ - 1/2e 6'-2[e-1((p + 2k~) + s ]  2 } (4.10) 

The first sum on the rhs of (4.10) is not greater than 

c12su p Var(/~l.l(0,.))e -6'/z ' {  ~ e x p [ - 1 / 2 e  6 '-47r2(2k-3/2)2]} 
0 k~>l  

(we use here the fact that, for Is[ ~<e-1~/2, I~ol ~<Tr, and k~> 1, the bound 
I~o + 2kTr + esl ~> ] 2 k -  3/21 7r holds), while the second one does not exceed 

cl3{sup Var(~l'l(0," )1 ~ \ ( - . ~  l / 2 , r c , s - l / 2 ) )} (1  + e - 6 ' / 2 -  1 ) 
0 

where we have done the summation 

e x p { - 1 / 2 e  ~' 2[e ~ ( tp+Zk~)+s ]  2} 
keo 

under the integral and c~2, c~3 are positive constants. Both expressions tend 
to zero as e ~ 0 due to condition D' and the choice of ~'. 

Therefore, as in the preceding section, we have to compute only the 
limit of the term with k = 0  in the sum on the rhs of (4.8), 

1/47C 2 f" dO exp( -  ilO) cos[e)(0) e- 2t] 

f 
TZ 

x &ocos[~o(O_q~)e-zt]e 1~-11 -1 F~,'[~-~x](~ q), 0) 

= 1/4re 2 dOexp(-ilO) {exp[ico(O)e-2t] +exp[-ieo(O)e-zt]}/2 

x drp{exp[ie)(O-q))e 2t] 
r c  

+ exp[ --im(O -- q)) e-2t] }/2g -1 [̂-1.1,,[ _1x318, - lfp, 0) (4.11) 
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Writing the rhs of (4.11) as a four-term sum, we remark that, as in the 
preceding section, the contribution of those terms that contain the 
exponents with the same signs tends to zero. In fact, consider, for example, 
the integral 

S dO exp(- i l0)  expEie~(0) ~ 2t] 

x dq;expEio~(O (p) ~-2t] e - 1 ^ A l l  1 - F(~),~[~_ ~](~ <p, 0)  

= dO exp(-ilO) exp [ie;(0) e - s t ]  

x f dg0 exp[io~(0 - ~<p) e : t]  ^ A 1.1 -~-,~ F(~),~[~ lx](<p, 0) (4.12) 

Using the representation (4.9), it is not hard to prove that (4.12) tends 
to zero, because for any fixed u > 0, the limit of (4.12) coincides with the 
limit 

-~ dO e x p ( -  ilO) exp [#n(0) e - s t ]  !imf 

f 
u 

x t21'1(O, ds)exp(- i sx)exp[ io; (O+ecp)e-s t ]=O 
- - u  

(4.13) 

In fact, let us substitute (4.9) in (4.12) and change the order of the integrals 
in &p and/21'1(0, ds). The key remark is that the asymptotic behavior of the 
integral 

(4n~ 6'+s) 1/2 f ~1'1(0, ds) 

x dq~ exp{i[g0(a[e ix] - x) + ~o(0 - a(p) e -2t - -  SX] 

- 1/4e -a' S((p+s)S} (4.14) 

is the same as that o f  

f lil"l(O, ds) exp{i[~o(0 + es) ~ - sx] } 2 t 
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To prove this, we divide the interval ( - e - b r ,  e - ~ )  of the integration in 
do into two parts, {~o: IcPl < e-ire, [(p +s[ > el+~,,} and ( - e l + ~ ~  where 
~" E (0, ~'/2) is a constant. The contribution in (4.14) of the integral over 
the first set vanishes, while the asymptotic behavior of the second addend is 
not changed provided co(0-e~0) is replaced by co(0+ es). Finally, let us 
prove (4.13). Taking the three-term expansion of ce(0 + es) in 5, we reduce 
the problem to proving the relation 

f 
Tr 

lira dO exp( - ilO) exp [i2ce(0) e-zt]  
e ~ O  

f. x fi~'l(O, ds)exp(- isx)exp{i[ce ' (O)e lst+ce"(O)s2t/2]}=O 
- - u  

which is easy to see, integrating by parts. 
Therefore, it remains to evaluate those terms in (4.11) that contain the 

exponents with opposite signs. For definiteness, consider the integral 

f ~ dO exp( - i l0 )  exp[ - ice(0)  e -z t ]  

x f  ~ d~oexp[ice(O-~o)e 2t ' ]g  - I ^ A l l  1 F(h,~c~_lx3(~ q~, O) 

= dO e x p ( -  ilO) exp[ -ice(O) e-2t]  
- - 7 C  

, g  --  l g  

x j dq~ (exp[ice(0-  eq~) e 2 t ]  ^ AI,J F(~),~re-~3(~o, O) (4.15) 

In the same way as before, one can establish that the asymptotics of (4.15) 
is the same as that of the integral 

1/16~ 2 f~ dO e x p ( -  ilO) f a~o exp [ -  ice'(O) e-'~ot + ice"(O) ~o2t/23 

A ^ 1 , 1  x F(~),4~_lxl(~o, 0) 

f- = 1/8g dO [exp(-ilO)][i/2zcce"(O) t] v2 
* - -  r c  

x f dz exp[ -izZ/2ce"(O) t] 

x s  lx] + ce'(0) ~-lt  + z, 0) (4.16) 
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Finally, returning to (4.6), it remains to check that  the asymptot ics  is not  
changed when one replaces -F~I,~E, ~x3 in (4.16) by/~1,1. This may  be easily 

done by integrating by parts. 
In a similar way, one determines the asymptot ics  of all nonvanishing 

terms on the rhs of (4.11). This gives the ( q - q )  contr ibut ion i n t o / ~ I "  The 
other terms are treated similarly. This leads to the conclusion of  

Theorem 4.1. 
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